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INTRODUCTION

Mammalian oocytes are arrested at diplotene stage of first meiotic prophase for a long time in 
ovarian follicle.[1] The achievement of meiotic competency starts with resumption from diplotene 
arrest, passes through metaphase I (M-I) to metaphase II (M-II), and ends with the extrusion 
of first polar body (PB-I) at the time of ovulation.[2,3] Hence, progression of meiotic cell cycle 
from diplotene arrest to M-II stage and successful extrusion of PB-I enables oocyte to get 
converted into haploid female gamete needed for successful fertilization and early embryonic 
development.[4-6] Thus, the meiotic maturation of oocyte is an important event that determines its 
quality and directly affects reproductive outcome in mammals including human.[4-6]

The oocyte meiotic maturation is mainly regulated by cyclic adenosine 3’, 5’-monophosphate 
(cAMP) and cyclic guanosine 3’, 5’-monophosphate (cGMP). These nucleotides are either received 
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from encircling granulosa cells or generated by oocyte itself 
in mammals.[7-10] Synthesis of cAMP as well as cGMP is 
regulated by adenylyl cyclase (AC) as well as guanylyl cyclase 
(GC), while their degradation occur by cyclic nucleotide 
phosphodiesterases (PDEs) both in encircling somatic cells 
and oocyte within the follicular microenvironment.[10-12]

Pituitary gonadotropins regulate these enzymatic pathways 
in the granulosa cells and oocyte to reduce their levels 
in follicular oocyte.[8-12] The decrease of cAMP as well as 
cGMP levels initiates downstream signaling pathways to 
phosphorylation of cyclin-dependent kinase 1 (Cdk1) 
and synthesis/degradation of cyclin B1. Thus, changes in 
Cdk1 phosphorylation status and cyclin B1 level destabilize 
maturation-promoting factor (MPF) in the oocyte. MPF 
destabilization overcomes diplotene arrest and oocyte 
undergoes meiotic resumption, progression from M-I to 
M-II, and extrudes first PB-I to become female gamete just 
before ovulation in mammalian oocytes.[8-12]

cAMP SIGNALING AND REGULATION OF 
OOCYTE MEIOTIC MATURATION

The cAMP is an important regulator of meiotic maturation 
in mammalian oocytes. It is continuously generated in the 
encircling granulosa cells and gets transferred to the oocyte 
through gap junctions to maintain diplotene arrest within 
the follicular microenvironment [Figure  1].[5,12,13] Oocyte 

also generates cAMP sufficient enough to maintain meiotic 
arrest[1,7,10] suggesting that the sustained high level of cAMP 
is associated with the maintenance of meiotic arrest in vivo.

In mammalian oocyte, AC is responsible for conversion of 
adenosine triphosphate (ATP) into cAMP and results in the 
sustained high level of cAMP level within the oocyte.[7,10] A 
closely related nine transmembrane bound (AC 1–9) genes 
with sequence homology and structural similarities have 
recently been reviewed in the human genome.[10] Out of 
which, AC3 has been detected in both mouse and rat oocytes, 
which is widely expressed intracellular source of cAMP in 
mammal.[10] Further, AC activators such as forskolin increase 
intraoocyte cAMP level and inhibit spontaneous resumption 
from diplotene arrest in mice,[14] rats,[15] bovine,[16] and 
human[17] oocytes cultured in vitro.

It is well established that AC signaling pathway generates 
intrinsic cAMP in mammalian oocytes, cAMP-
phosphodiesterase (cAMP-PDE) is required to be inactivated 
to prevent degradation of cAMP so that the elevated cAMP 
level could be maintained to maintain meiotic arrest in 
mammalian oocyte.[10] This notion is further strengthened by 
observations that PDE inhibitors increase intraoocyte cAMP 
level and maintains diplotene arrest in rat,[18] mouse,[19] 
bovine,[20] pig,[21] and human oocytes cultured in vitro.[17]

The cAMP as intraoocyte regulator of meiotic maturation 
is further strengthened by in vitro studies that membrane 

Figure  1: Schematic diagram showing the involvement of cyclic nucleotides (cyclic adenosine 3’, 5’-monophosphate [cAMP] and cyclic 
guanosine 3’, 5’-monophosphate [cGMP]) during the oocyte maturation in mammals. (a) Transfer of cAMP and cGMP from encircling 
granulosa cells and generation of cAMP with in the oocyte causes high sustained level of cyclic nucleotides that result in the maintenance of 
diplotene arrest for longer time within follicular microenvironment. (b) Disruption of gap junctions and interruption of cyclic nucleotides 
from encircling granulosa cells to the oocyte initiate downstream signaling pathways to destabilize maturation-promoting factor (MPF). 
Destabilized MPF induces meiotic resumption from diplotene arrest in mammalian oocytes in vivo as well as in vitro. (c) However, generation 
of cAMP through adenylate cyclase pathway is sufficient to maintain stabilize MPF and thereby M-II arrest in oocyte soon after ovulation.
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permeable analogs such as db-cAMP or 8-bromo-cAMP 
increase intracellular cAMP and maintain diplotene arrest 
in rat, mouse,[22] rabbit,[23] goat,[24] and porcine oocytes.[25] 
Measurement of intracellular cAMP further suggests that 
high intraoocyte cAMP level maintains diplotene as well 
as M-II arrest, while transient decrease in its level induces 
meiotic resumption from diplotene as well as M-II arrest in 
rat oocytes cultured in vitro.[18,26]

Gonadotropin surge increases intracellular cAMP level in the 
encircling granulosa cells of preovulatory follicles through 
adenylate cyclase pathway.[27,28] through the activation 
of mainly G stimulatory protein-coupled cell surface 
receptors.[29] The increased cAMP level disrupts gap junctions 
among encircling somatic cells and between granulosa cells 
and oocyte that results in the interruption in the transfer of 
cAMP to the oocyte. In addition, hydrolysis through various 
cAMP-PDEs further reduces cAMP level leading to meiotic 
resumption from diplotene arrest in follicular oocytes.[7,29-31]

Physical removal of encircling granulosa cells disrupts gap 
junctions and culture of denuded oocytes in appropriate 
medium allows oocyte to undergo spontaneous resumption 
from diplotene arrest under in vitro culture conditions.[27-31] 
Thus, a transient decrease occurs in the oocyte that initiates 
downstream signaling pathway to induce resumption from 
diplotene arrest in mammalian oocytes. Taken together, 
these studies suggest that sustained high level of cAMP 
maintains diplotene arrest, while reduction in its level 
signals downstream pathway to induce meiotic resumption 
from diplotene arrest.[29,32] Indeed, cAMP is an intraoocyte 
regulator of meiotic maturation in mammalian oocytes.[33]

cGMP SIGNALING AND REGULATION OF 
OOCYTE MEIOTIC MATURATION

The cGMP is another important signal molecule produced 
by the membrane GC natriuretic peptide receptor 2 (NPR2, 
also called guanylyl cyclase-B or GC-B) in the granulosa cells 
of follicular oocytes.[34-36] The GC-B is expressed in mural as 
well as cumulus granulosa cells, while its expression was not 
reported in oocyte or theca cells of the follicle.[34-36] The mural 
granulosa cells produce C-type natriuretic peptide (CNP 
or natriuretic peptide C or NPPC) and activates NPR2.[34,35] 
Unlike cAMP, cGMP is generated in the granulosa cells 
only and transferred to the oocyte through gap junctions to 
regulate the meiotic cell cycle.[35]

The cGMP is hydrolyzed by specific PDEs that regulate 
cGMP level in the granulosa cells as well as in oocyte.[35,37] 
This possibility is further supported by in vitro studies that 
various PDE inhibitors increase intraoocyte cGMP level and 
responsible for diplotene arrest in rat,[35] mice,[37] and porcine 
oocytes cultured in vitro.[38] A decrease of intraoocyte cGMP 
increases PDE3A activity that results in the decrease of 

cAMP level. The decrease of cGMP triggers resumption 
from diplotene arrest in rat oocytes cultured in vitro.[39] In 
addition, pituitary gonadotropins decrease cGMP level and 
induce meiotic exit from diplotene arrest in mouse[40-42] and 
pig oocytes,[43] while high level of cGMP maintains diplotene 
as well as M-II arrest in rat oocytes cultured in vitro.[8,11,33] 
Taken together, these observations suggest that increase of 
cGMP prevents spontaneous exit from diplotene arrest, while 
reduction in its level initiates downstream pathway to induce 
exit from diplotene arrest in mammalian oocytes. Indeed 
after cAMP, cGMP is another intraoocyte regulator of oocyte 
meiotic maturation in mammals.

CYCLIC NUCLEOTIDES REGULATE MPF

Changes in cAMP as well as cGMP levels regulate oocyte 
meiotic competency either by changing the activity of 
MPF or regulating its destabilization/stabilization process. 
Increase of cAMP level results in the activation of protein 
kinase A (PKA), which, in turn, phosphorylates several 
proteins and stabilizes MPF to maintain meiotic arrest.[13,16] 
The cGMP from granulosa cell origin inhibits the activity of 
PDE 3A, which is responsible for the hydrolysis of cAMP and 
elevates intraoocyte cAMP level in the oocyte [Figure 1].[36] 
Increased level of cAMP promotes the phosphorylation of 
Cdk1 at threonine-161 and stabilizes MPF.[42,44] Thus, meiotic 
arrest in diplotene as well as M-II stage is maintained by 
sustained high level of stabilized MPF in oocytes.[33] Indeed, 
high level of cAMP as well as cGMP maintains stabilized 
MPF and thereby meiotic arrest at diplotene as well as M-II 
stage in vivo as well as in vitro.[8,11] The non-specific as well 
as specific PDE inhibitors prevent spontaneous exit from 
diplotene arrest under in vitro culture conditions probably 
by increasing cAMP and cGMP level. PDE inhibitors reduce 
fertilization rate, blastocyst formation and also induce 
pregnancy loss without disturbing reproductive cyclicity and 
ovulation process in mammals.[45]

The decreased level of cGMP relieves inhibition of PDE3A 
in the oocyte[40,41] and active enzyme reduces intraoocyte 
cAMP level. Hence, reduced intraoocyte cAMP level results 
in the inactivation of PKA and thereby MPF destabilization 
and triggers meiotic exit from diplotene and M-II 
arrest.[33,44] Further, denudation process by physical removal 
of encircling granulosa cells interrupts transfer of cAMP 
as well as cGMP from the granulosa cells to the oocyte and 
spontaneous hydrolysis by PDEs results in the transient 
decrease of their levels in the oocyte.[8,9] The decrease of these 
cyclic nucleotides drives downstream signaling pathways to 
induce meiotic exit from diplotene arrest in vitro.[4] Similarly, 
pituitary gonadotropins surge disrupt gap junctions among 
encircling granulosa cells and between encircling cumulus 
granulosa cells to the oocyte.[46] Disruption of gap junctions 
affects the transfer of cAMP as well as cGMP from granulosa 
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cells to the oocyte,[11,14,15] thus causing a transient decrease of 
their levels in the oocyte.[36] The reduced intraoocyte cAMP 
level modulates phosphorylation status of Cdk1 and triggers 
cyclin B1 degradation that destabilizes MPF and/or increases 
Cdk1 activity.[9,12] The meiotic competency is initiated due to 
destabilized MPF and/or increased Cdk1 activity that leads 
to meiotic exit from diplotene arrest in pre-ovulatory follicles 
of several mammalian species.[3]

CLINICAL AND COMMERCIAL USE OF CYCLIC 
NUCLEOTIDES

The in vitro maturation (IVM) is clinically attractive 
reproductive technology, wherein immature germinal 
vesicle stage oocytes are collected and cultured for IVM 
until it reaches M-II stage possessing PB-I.[47-49] The artificial 
elevation of cAMP in under in vitro culture conditions has 
shown potential to improve pregnancy rates.[7] To increase 
cellular cAMP, COCs are exposed to AC activators and PDE 
inhibitors have been used during pre-IVM phase.[50-54] This 
type of cAMP modulating system has been shown to increase 
cAMP level in COC substantially that mimics to some extent 
the in vivo spike of cAMP caused by gonadotropin surge.[55] 
Studies suggest that artificial modulating system of cAMP 
significantly improves oocyte quality, thereby blastocyst 
development, blastocyst quality, and pregnancy rates.[56-58] 
Thus, cAMP modulating system during pre-IVM stage could 
be a potential approach to bridge gap between IVM and IVF 
and has clinical as well as commercial relevance.

CONCLUSION

The cAMP as well as cGMP are produced in encircling 
granulosa cells and transferred to follicular oocyte through 
gap junction. Oocyte is also capable of generating cAMP 
good enough to maintain meiotic arrest at diplotene as well 
as M-II stages. Thus, high sustained levels of these cyclic 
nucleotides do not permit oocyte to complete meiotic 
maturation and affect oocyte quality. On the other hand, 
gonadotropin surge or removal of granulosa cells disrupts 
the transfer of these two cyclic nucleotides to the oocyte. As 
a result, intraoocyte cAMP as well as cGMP levels decrease 
that further increase their hydrolysis by oocyte-specific 
PDEs. Thus, a transient decrease of cyclic nucleotides triggers 
downstream pathway to destabilize MPF and/or its activity. 
The MPF destabilization drives spontaneous exit from 
diplotene arrest and oocyte achieve meiotic competency 
by reaching at M-II stage and extruding PB-I. The M-II 
arrested oocytes with PB-I are the right choice for successful 
fertilization and various assisted reproductive technology 
(ART) programs to optimize the reproductive outcome in 
several mammalian species including human. Indeed, cyclic 
nucleotides play an important role in the regulation of oocyte 
meiotic maturation and quality that could be used to improve 

ART outcome in several mammalian species including 
human.
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