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INTRODUCTION

Growth factors typically act as signaling molecules, transforming growth factor-beta (Tgf-β), glial cell 
line-derived neurotrophic factor (GDNF), and sex steroids are vital regulators for growth, neuronal 
differentiation, and gonadal functions in response to reproduction, also many other biological 
processes.[1,2] TGF-β is essential for the development of the persistence and mediator of midbrain 
dopaminergic (DA-ergic) neurons and also upsurges the tyrosine hydroxylase (Th) expression levels 
in the brain.[3] Defective signaling pathway regulation transduces the Tgf-β signals, leading to several 
disorders, such as cancer, cardiovascular, metabolic, neurodegeneration, and other neurological 
disorders in the central nervous system (CNS).[4] A previous study reported the neuroprotective 
effects of Tgf-β, receptors (1-3), activin A, and GDNF for DA-ergic neurons in vitro, protein 
expression increases the survival of Th-immunoreactive DA-ergic in mice and catfish.[5,6] Tgf-β is an 
essential growth factor involved in various functions, that is, apoptosis, sex differentiation, cellular 
proliferation, and growth also act as a paracrine factor which plays key roles in gonadal functions[7] 
such as stimulation of follicular development and steroid hormone 17β-estradiol (E2) and androgen 
(T) production in mammals.[8] In rainbow trout, Tgf-β stimulates the proliferation of spermatogonial 
and primordial germ cells[9] and prevents the maturation of oocytes in zebrafish.[10,11] Some 
members of the Tgf-β exhibit vital functions in reproduction by regulating gonads.[8,12] However, 
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it also upsurges the potency of particular Tgf-β, neurotrophin, 
fibroblast growth factor-2, brain cell-derived neurotrophic 
factor (BDNF), ciliary neurotrophic factor, and GDNF which 
regulate cellular processes during embryogenesis and support 
DA-ergic system in teleost.[3,13,14] Eliminating the Tgf-β type 2 
receptor in DA neurons interrupt Tgf-β1 expression and 
GABAergic neurons, elevating mammals’ inhibitory input.[15] 
Prominently, several neurotrophic factors, neurotransmitters/
neuropeptides, and sex steroids are known to regulate 
gonadotropin (GTH), modulating the gonadotropin-releasing 
hormone (GnRH), and/or catecholaminergic (CA-ergic) 
systems at the level of the brain, to succeed reproduction.[16] In 
CNS sex steroids, E2 and methyltestosterone (MT) are strong 
regulators of various diseases that occur in organ systems 
and also regulate the gonadal development and maintain a 
reproductive system in both sexes.[17,18] Sex steroid E2 controls 
DA-ergic activity in many ways, that is, neurotransmission 
in combination with enzymes and anti-DA-ergic producing 
effects that involve neuron degradation.[19] In addition, DA is 
the significant inhibitory neurohormone that regulates GTH, 
whereas the stimulatory influence of norepinephrine (NE) and 
serotonin (5-HT) on GnRH release.[20,21] Moreover, natural sex 
steroids are altered by exogenous steroids that can mimic and 
disturb the neuroendocrine system.[22] McEwen[23] reported 
that gonadal steroids regulate diverse physiological functions 
in developing and mature neural targets by the hypothalamic-
pituitary-gonadal (H-P-G) axis which further provides access 
to brain function organizational dealing with neuronal circuits 
and response capabilities, together with sex differences. The 
present review highlights the interactions of key growth 
factors and sex steroids and their regulation in the H-P-G axis 
and associated vital transcripts/genes, influencing regulatory 
pathways, and expression profiling to understand the regulation 
of brain over gonadal functions.

INVOLVEMENT OF GROWTH FACTORS AND 
OTHER KEY FACTORS IN THE BRAIN AND 
GONADAL FUNCTIONS

Tgf-β

Tgf-β is a crucial growth factor for developing midbrain DA-
ergic neurons in vitro and in vivo.[2] However, in deficient mice, 
Tgf-β isoform and its receptor have not yet shown a role in CNS 
development.[24,25] Previously, human immunohistochemical 
analyses have been observed using specific polyclonal antibodies 
of Tgf-β1 and Tgf-β2 to identify cellular localization in ovarian 
tissues of various reproductive stages.[26] Further, ovarian 
tissue produces Tgf-β1 and Tgf-β2, though Tgf-β1 exists in 
main ovarian cell types; however, Tgf-β2 is produced by only 
follicular theca cells and luteal cells.[26] The Tgf-β1 signaling 
extensively regulates biological responses and various regulatory 
mechanisms at the molecular level of Tgf-β signaling in the 
modulation of specific physiological processes also brain and 

gonadal functions.[3,27] In goldfish, Tgf-β expression of the ovary 
showed a reduction in androgen production and its vital role in 
gonadal development at two different stages.[28] The significance 
of Tgf-β in reproductive function suggests the implication of 
cytokines in infertility and other sexual dysfunction.[29] Based on 
this premise, it is worthwhile to investigate the impact of Tgf-β 
and the modulatory action of a brain-pituitary-gonadal axis. The 
earlier report investigated Tgf-β as a vital molecule that regulates 
the survival of neurons synergistically with neurotrophic factors 
GDNF, BDNF, neurotrophin, and neuropeptides[6,30] in turn, 
these factors regulate the release of active TGF also modulation 
of Leydig cell steroidogenesis with androgenic steroids. Our 
recent finding revealed that the prominent Tgf-β mRNA and 
protein expression appear to propose a significant impact on 
growth factor signaling at the level of the brain. Further, TGF-β 
protein expression in the preoptic area of hypothalamus (POA-
HYP) by immunolocalization indicates its role in neuronal 
development through GnRH and GTH axis which might 
support gonadal functions.[3]

GDNF/GDNF family receptor α-1 (GFRα-1)

Neurotrophic factors typically act as signaling molecules that 
influence the development and differentiation of many central 
and peripheral neuronal cells in response to reproduction. 
GDNF predominantly binds to GFRα-1 by modulating 
several central neurons including DA-ergic neurons in the 
brain[31] and protects against neurodegeneration. The complex 
GDNF-GFRα-1 recruits the tyrosine kinase transmembrane 
protein to upshot DA-ergic neurons differentiation.[32-34] In the 
neuroendocrine system brain, glial cells are an abundant cell 
type[35,36] that produces neurosteroids[37] such as estradiol-E2, 
T, and neurotrophic factor GDNF in teleost.[6,38] Earlier 
studies confirmed that GDNF upsurges the DA uptake and 
Th expression and promotes the growth of midbrain DA-
ergic neurons. Furthermore, GDNF acts as a neurotrophic 
factor in motor neurons and noradrenergic neurons in the 
CNS.[39,40] Our previous findings reported immunolocalization 
of GFRα-1 which exposed its presence in preoptic POA-
HYP in adult catfish. Furthermore, siRNA transient 
silencing showed a lower expression level of Gfrα-1 and 
down-regulated the brain-related gene expression. In 
catfish brains, Gfrα-1 expression declined on the 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine, MPTP treatment 
triggering neurodegeneration, when further correlated with 
catecholamines (CAs), L-3,4-dihydroxyphenylalanine, DA, 
and NE levels, which conceivably entrains GnRH and GtH axis, 
by targeting CA-ergic activity moderately.[6] In addition, GDNF 
has neurotrophic and anti-apoptotic properties, which delay 
homeostasis of DA at different levels, that is, stimulation of the 
DA-ergic system, which inhibits the DA transporter activity, 
and Th transcription.[34] Neurochemical effects mediated 
by GDNF supplement the DA-ergic function, which might 
play a key role in motor symptoms possibly in pre-clinical or 
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clinical studies.[41,42] In GDNF-transgenic mice, motor neurons 
are located in the spinal cord; however, GDNF-deficient 
mice showed a significant decrease in motor neurons.[43] The 
earlier study by Viglietto et al.[44] shows that GDNF secrets 
from Sertoli cells to undifferentiated spermatogonia which 
proves to be a paracrine factor in mouse testes. Moreover, in 
rodents, proliferation, and suppression of differentiation of 
undifferentiated spermatogonia are promoted by GDNF.[33,45]

Th and CAs

Th is the rate-limiting enzyme involved in the biosynthesis 
of CAs, DA, NE, and epinephrine (E) which are the products 
of pathways that act as neurotransmitters and hormones in 
the CNS. Growth factors affect CA-ergic differentiation by 
evidence of Tgf-β, supporting the biosynthesis and expression 
of CA enzymes which indicate phenotypic expression possibly 
regulated in the CA-ergic cells, in vitro and in vivo.[46] In female 
catfish brain, Th and CAs expression levels[47] along with the 
5-HT validated that Tph-5-HT[48,49] vis-à vis Th-CA may have 
a substantial role in brain sex differentiation consequently, on 
gonads.[50] In vitro, within 24  h treatment of cells with TGF, 
upsurges significantly the number of Th-positive DA-ergic 

neurons in rat embryonic day 12; however, neutralization of 
TGF entirely eradicates the DA-ergic neurons induction.[2] 
The key molecule, TGF-β, regulates neuronal survival and the 
Th-CAergic system synergistically with neurotrophic factors, 
that is, neurotrophin, GDNF, Gfrα-1, and BDNF.[6,30] Our 
previous study revealed that certain brain-related genes 
including th, tph, and cyp19a1b possibly have a key role in 
brain sex differentiation orchestration which regulates gonadal 
development.[50] The Intrastriatal GDNF target GDNF signaling 
which protect DA-ergic neuron content and Th activity in 
postnatal rats.[51] Taken together, affected DA-ergic neurons 
induce depletion of Th and DA also causing neurodegeneration 
in the brain and impairment of reproduction partially in catfish 
supported by the evidence of lower expression level sex steroids 
and gonad-related genes (Unpublished).

Sex steroid and GnRH

Sex steroids are essential in sexual functions and regulating 
many neuroendocrine activities. Our recent study 
highlighted the controlled release of sex steroids through an 
osmotic pump intraperitoneally implanted with E2 and MT 
as opposed to the gender-regulated differential GnRH-GTH 

Figure  1: The schematic diagram represented the role of mismatched sex steroids treatment, 
drug delivery through an osmotic pump in the male and female brain using the catfish model 
and overexpression of transcripts/genes and their influences on the brain-gonadal functions. T: 
Testosterone, 11-KT -E2: Estradiol-17b, MT: Methyltestosterone, CAs: Catecholamines, gdnf/gfrα-1: 
Glial cell line-derived neurotrophic factor/gdnf family receptor alpha-1, GnRH1: A  gonadotropin-
releasing hormone, tph: Tryptophan hydroxylase, th: Tyrosine hydroxylase, Tgf-β: Transforming 
growth factor-beta, Cyp19a1b: brain aromatase, and hsd3b: 3β-hydroxysteroid dehydrogenase.



Mamta: Role of Tgf-β and sex steroids in brain-gonadal functions 

Journal of Reproductive Healthcare and Medicine • 2022 • 3(9) | 4 Journal of Reproductive Healthcare and Medicine • 2022 • 3(9) | 5

axis and CA-ergic system. In addition, sex steroid treatment 
control CA-ergic activity and expression of brain-related 
genes, that is, catfish GnRH1, Gfrα-1, hsd3b, cyp19a1b, tph, 
and th consequently mismatched treatment of sex steroids 
showed estrogenic effect over androgenic at a lower dose 
which altered reproductive activity at the level of the brain 
by targeting CAs and GnRH1 in catfish [Figure 1].[18] The 
teleost brain produces several neurosteroids such as E2 
and neurotrophic factors, that is, GDNF, BDNF, and other 
neurotransmitters involved in DA neuron development also 
maintenance of the nervous system and reproduction. In 
the previous study, sex steroids play a pivotal role during 
sexual differentiation[52,53] where DA action modulated by 
E2 combinations with enzymes at different levels produced 
anti-DAergic effects in teleost.[19] The regulatory role of 
steroids illustrates the interface between sex steroids, 
neurodegeneration, regeneration, and neuroinflammation 
through neurogenesis.[54] Besides, sex steroids regulate the 
morphology and many neural cells such as neuronal cells, glial 
cells, and endothelial cells which modulate neural activity, 
growth factor expression, and their function at the level of the 
brain in mammals and teleost.[18,54,] A previous study reported 
that in the nucleus through estrogen receptors (ERs) activity, 
E2 directly controls transcription at the promoter region of 
various growth factors, BDNF, TGF-α, and NT-4. Instead, in 
the dendritic spines, sex steroids can bind androgen receptors 
and ERs to develop translation of BDNF through MAPK/
ERK and PI3K/AKT activation.[55,56] It has been reported 
that the brain is influenced by sex hormones T, E, and 
progesterone; moreover, the nervous system has receptors 
for sex hormones during fetal development.[57,58] In mice, 
both prenatal and postnatal administration of non-steroidal 
antiandrogen (flutamide), T affected sexually dimorphic 
nuclei development in the hypothalamus.[59] In some species 
including catfish, sex steroids modulate the secretion of 
GTH which affects the activity of DA neuron in POA and 
HYP.[16,60,61] These variations influence the collaboration of 
gonadal steroids with CAs and GnRH in regulating GTH-II 
secretion.[21]

CONCLUSION AND FUTURE RESEARCH 
PERSPECTIVES

This review concludes that the growth factor Tgf-β with 
coordination of sex steroids and other crucial factors GDNF 
has a significant impact to regulate brain and gonadal 
functions by targeting DA-ergic neurons and signaling. 
Moreover, TGF-β immunolocalization protein expression 
in the POA-HYP and higher expression in the developing 
brain by tissue distribution and ontogeny exhibited its 
possible role in brain development through GnRH and GTH 
axis, plausibly supporting gonadal functions in catfish. In 
addition, administration of sex steroid E2 in male catfishes 
through osmotic pump caused elevated expression of GnRH1 

along with CAs resulting in estrogenic impact, whereas 
MT treated of opposed sex resulted in reverse, although 
gonadal function yet to study in depth. Importantly, plausible 
mechanisms of TGF-β with coordination of neurotrophic 
factors predominantly GDNF/Gfrα-1 and sex steroids, also 
their manifest neurotrophic effects on midbrain DA-ergic 
neurons raise expectations for a therapeutic approach to 
neurological diseases and impairment of reproduction.
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